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STEADY-STATE THERMOELASTICITY FOR INITIALLY
STRESSED BODIES
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An elastic body, deformed from a state of zero stress and strain and uniform temperature by a
large deformation and steady-state temperature distribution, is subsequently subjected to small
displacements and steady-state temperature distributions. After a general analysis of the problem
the work is specialized to the case when the initial large deformation is homogeneous at constant
temperature. A general solution of the equations for the small superposed deformation and
‘steady-state temperature distribution is obtained in terms of three stress functions valid for some
regions of space including the half space and thick uniform plate, when two perpendicular exten-~
sion ratios of the initial homogeneous deformation are equal. Applications are made to problems
of a plane circular (penny-shaped) crack in an infinite medium and to half-space problems.
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1. INTRODUCTION

Thermoelasticity for classical infinitesimal elasticity has received much attention in recent
years. Here we are concerned with an ideally elastic body, deformed from a state of zero
stress and strain and uniform temperature, which is subsequently subjected to small dis-
placements and steady-state temperature distributions. The body is assumed to be isotropic

Y B \

:é initially but no further restriction is placed on the strain-energy function. There is, however,
S z no difficulty in extending the analysis to apply to aeolotropic bodies. The work is an exten-
ez sion of that given by Green, Rivlin & Shield (1952) and Green & Zerna (1954) who con-
O sidered small deformations superposed on a large deformation, all at constant temperature.
E 8 A summary of basic formulae is given in § 2 and the general analysis of the problem is con-

tained in § 3. In § 4 the special case of an initial large homogeneous deformation at constant
temperature is considered and this is further specialized in the rest of the paper to the case
when two extension ratios parallel to two rectangular Cartesian co-ordinate axes are equal.
In § 5 a general solution of the equations for the small superposed deformation and steady-
state temperature distribution in a compressible body is obtained in terms of three stress
functions, valid for some regions of space including the half space and thick uniform plate.
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518 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE

The corresponding results for an incompressible body are given in §6. The remaining
sections of the paper are concerned with some applications of the theory to problems of a
plane circular (penny-shaped) crack in an infinite medium and to half-space problems.

2. NOTATION AND FORMULAE

We use the notation and formulae given by Green & Adkins (1960) and we quote the
main results here. Points in the body are defined by a general curvilinear system of co-
ordinates #; which moves with the body as it deforms. The initial base vectors and metric
tensors are g;, ¢’ and g;;, g¥ respectively and the corresponding values in the deformed body
are G;, G’ and G,;, GY so that

8ij = gi'gja gij = gi.gj,

G, =G,.G;, G =G.GJ, (2-1)
girgrk = GirGrk = 8116
The strain tensor is defined by Vi = 3(G;—g;) (2-2)

and we define y! by the formula
V= 8"y = $(g7G; 3. (2:3)
Latin indices take the values 1, 2, 3 and repeated indices are summed.

The contravariant stress tensor 79, measured per unit area of the deformed body, and
referred to ¢; co-ordinates in the deformed body, is given by

T = Qg +-V'BY + pG (2-4)
if the body is initially isotropic and homogeneous, where
BY — (gig" ~g'g") G, (25)
and @——-%%—IM{, T=%%—%}, PZQ«/I:;%%- (2-6)
In (2-6) W is the Helmholtz free-energy function
W=W(,I,I,T), (2-7)
where 7 is temperature and J; are the three strain invariants
I =giG,, I,=1LGYg;, I,=Glg, (2-8)
and G=|Gyl, g=g;l- (2+9)
If the body is incompressible then
I;=Glg=1, W=W(,1L,T), (2-10)
and (I):Q%—IWI-, ‘F:2%~?—:. (2-11)

"The stress tensor is still given by (2:4) but p is now an arbitrary scalar representing a hydro-
static tension.
When body forces are zero the equations of equilibrium are

0T,)00 ="T,, =0, (2-12)
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THERMOELASTICITY FOR INITIALLY STRESSED BODIES 519

or 7|, = 0, (2-13)
where T, = J(G) 179G, (2-14)
and p, the density of the deformed body, is related to the (constant) density p, of the un-
deformed body by the equation pJG = po./a. (2:15)

The double line in (2:13) denotes covariant differentiation with respect to the deformed

body using the metric tensors G,;, G¥ in forming the Christoffel symbols.

If Q denotes the heat-conduction vector per unit area of the deformed body and

then, for steady-state conditions, Q=G (2:16)
Q=0 or (%(Q"JG) =0. (2:17)

When the body is initially isotropic
—Q = (G + %+ Eryy) T+ X5 %+ G5+ 4y W v T1, Tll, - (218)

where o — G, Tl = GIr T, = GO (2:19)

and ¢ is the alternating Cartesian tensor. Also ), ..., %; are polynomials in the invariants
I D I 25 13?
I, =TI T},
I = T, T}, }
Is = T, T\ vess

(2:20)

with coefficients which are continuous functions of 7". The heat-conduction vector satisfies

the condition — Qi T|, >0. (2-21)

3. SMALL DEFORMATIONS SUPERPOSED ON A LARGE DEFORMATION

We consider a deformation of the body which is such that the state of stress, strain and
temperature differs only slightly from the state in a known finite deformation. We suppose
that the displacement vector is given by

V(0,0 05) +ew(0,,0,,05), (3:1)

where v is the displacement vector of the known large deformation and ¢ is a constant which
is small enough for squares and higher powers to be neglected. The analysis of strain is
identical with that given in chapter IV of Green & Zerna (1954) (see also Green,
Rivlin & Shield (1952)) and the relevant results will be quoted here. Much of the analysis
of stress is also similar but now we must allow for temperature variations and must discuss
the heat-conduction vector. We suppose that the temperature has the form

T(0,,05,05) +-€T7(0,, 05, 05), (3-2)

where T is the temperature distribution corresponding to the displacement vector v. We

denote base vectors, metric tensors, strain tensors and invariants, stress tensors corresponding
63-2
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520 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE
to (3-1) and (3-2) by G;+¢G/, G'+¢G"i, G,;+¢G;;, GV +eG'I, y; ey, yi-+eyf, L+el;, and
7% +¢1'¥, respectively. Hence
G =w ;= w,[;,G" =w"|,G,,
w = w, G" = uw"G,,
Gi,j = Gi'G]{_l_Gj'G; = wiHj‘f‘ijp >

y (3-3)
G’ = GGIG),
G = GiG+ GG,
GV = — GGG, )
Also I} = g~G,,, ‘
o 1, = g, (G 1+ G”Ié)a} (3-4)
I =G'|g = I;GIG};,

and v = 3G,

T/ TALC (3-5)
Formulae for 7% are given in Green & Zerna, when the temperature is constant, for a body
which is initially isotropic and either compressible or incompressible. When the temperature
takes the form (3-2) extra terms are required in 7’4 but since the derivation is straight-
forward we quote the final results without detailed working. Thus, for a body which is

compressible and initially isotropic,

7' = gy 4 B - B Gl Giip, (3-6)
where B = (gigrs —g"g”) Gy, = emeing, G, g, (3:7)
and O = AL+ FI, 1 EI, —g]l L4+ LT,
3
! ’ 4 ! lP‘ 4 !
W' = FI+ B+ DI~ o i+ MT', | (3-8)
3
¥ = L(EL+ DI+ CI) + b I+ NI, T,
3

2 2w 2 *wW 2 2w
o (3:4) Aty Py CT UL o
2 0*°W 2 °W 2 02w
P ooy B gnonary T UL anan | &9
2 2w 2 eW 2w
L=rorar;, M= norery; Ny erory)

the derivatives in (3-9) being evaluated at ¢ = 0.
When the body is incompressible the formulae (3-6) still hold but now

@ = Al FI,+ LT, }

W' — FI,+BI,+MT', (3-10)

where 4, F, B are given by (3-9) with I; = 1, and p’ is not given by (3-8) but is an arbitrary
scalar function.
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THERMOELASTICITY FOR INITIALLY STRESSED BODIES 521

~ The stress equations of equilibrium are the same as those in Green & Zerna (1954)
but here we obtain equations in a slightly different form. Corresponding to (3-1) and (3-2)
T, and p in (2:12) become T,;+¢T;, and p-+e¢p’, respectively. From (2-14) and (3:3) we

see that T; = J/(G) [r'm +-riwm|, +7rimwi||] G, (3-11)
Also, from (2:12) and (2-15) we have
T;,i=0, p' =—pwl (3-12)
It follows from (3-11) and (3-12) that
79|+ 7w ||, + 790" |, ][|; = 0. (3-13)
Alternatively, using (2-13) we can reduce (3-13) to
T+ 7707 ||+ 790" ||y = 0. (3:14)

Equation (3-14) is a more convenient form for equation (4+1-17) in chapter IV of Green
& Zerna (1954).

Finally, we require expressions for the components of the heat-conduction vector which
are denoted by Qi+¢Q". A general expression for @'¢ can be found from (2-18) but in order
to avoid undue complication in the analysis we restrict attention now to problems such that
the deformation which corresponds to the displacement vector v (i.e. ¢ = 0) is one of
equilibrium at constant temperature 7. It follows that

Q=0, —Q"=(G4+Cy+Cr.y) T'IV, (3-15)
where %,, %,, ¢; are now polynomials in I, I,, I; with coefficients which are constants
depending on the constant temperature 7. In (3-15)

Ty = GirT'), = Gir o (3-16)
Since ' is zero, equations (2:17) and (2-21) yield
' . d
Qili=0 or 2:(Q1JG) =0, (3:17)
- —Q1T|; = 0. (318)

4. SMALL DEFORMATION SUPERPOSED ON LARGE UNIFORM EXTENSIONS

We now assume that the initial deformation is one of uniform extensions parallel to a
set of rectangular Cartesian axes. Referred to this system of axes points of the body, after
the initial deformation which corresponds to the displacement vector v, are denoted by
(%, y,z) and we choose 8; so that

Oy=x, O,=y, 0=z (4-1)
Hence ‘ G =G6Y = &5, G=1, G,=Gm, | (4-2)
and if the uniform extension ratios parallel to the axes are A;, A,, A; then '
-1 -
;1—%9 09 0>
. A3, 0, 0,
gij = 0, E, , 0, s gij = ‘0, /1%, 0, . (4:'3)
1 09 O) /Ifzi)
09 09 /1_§’
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522 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE

With these values of the metric tensors the special values assumed by the formulae of § 3
can be obtained without difficulty and results corresponding to 7’ = 0 have already been
given in chapter IV of Green & Zerna (1954). Consequently only the final formulae will
be recorded here.

When the body is compressible

1 — DA+ PR (A3 +A3) +,
72 = O+ W3+ A2) + 4,
19 = O3+ WA (A3 +A3) +,
712 — 723 _ 31 — .

, du v dw )]
7l = 511376+512@+0133’2+‘01 T,

(4-4)

, du v ow , .
7’22 :c21%~|—022@—|—023a—z~+w2T,r (4-5)

, ou v ow ,
7% = 0313;"‘532@4‘533524‘“3 T,

g |
where w'=w, =u, w=w,=1v, w=w;="uw,
¢ = —T1+ 24044 2BAH(A24-13)2+ 202 2324
+4DAAFA(A3 +A3) +4EAFAZAS + 4FAT (A5 1-43),
61 = — QA+ A (A —A3) +p+2443 13
+2BAFA3(A3423) (A3 +A3) + 20234445
+2DAF AR (3434 A3A3 4243 43)
F2EN3AZAZ(A3+A3) +2FA2 A3(A3 423 +243), (4+7)
and w; = LA+ M3 (A3+23) + NA3A3A3,
0y = LA+ M(3+23) + NAZA3A3, (4:8)
0y = LA+ MA3(A2+A3) + NAjAZAS.
Also ¢y, €55 are obtained from ¢,, by cyclic permutation of A}, 4,, 4; and 711, 722, 133, and
Ca3, €41 are obtained from ¢,, by cyclic permutation of A}, 4,, 4;. In addition

(4-6)

Cyy—Cyp = T —722,
C3g—Cog = 7.22_,733, (4.9)
013—Cy = T3 =11,
04y = — Y323,
t55 = — VY3 — 1, (4-10)

Ces = — YAA3—p.
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THERMOELASTICITY FOR INITIALLY STRESSED BODIES 523
When the body is incompressible

LA =1, ZZ+(‘;;+3;” 0, (4-11)
and then T =y’ +augu+“lzzv+“l3gw+wl T, |
72 = ' +alzgu+agzz;+a233w+a)2 T,; (412)
78 =g’ +amgu+azagv+a333w+m r,
where ay, = —2p+20H{A+ B(A3+23)2+2F (A3 +43)}, (4-13)

g = 2B {E +A+BG+A3) (§+23) +F(AF+23+243)},)

Gy, 435 and a4, ;5 being obtained from a,;, a,, respectively by cyclic permutation of A,,
Ay, A5. The remaining stress components are given by (4:6) and (4:10) and v, reduces to

0, = LB+ MR(3+A3), (4-14)

with w,, w, obtained from this by cyclic permutation of 4, A5, 45.

We observe that all the coefficients ¢;;, a;;, v; are constants and p’ in (4-12) is an arbitrary
scalar function. ;

For some purposes it is more convenient to have stress components referred to rectangular
Cartesian co-ordinates (x,y, z) and these can be obtained as in Green & Zerna. Denoting
the stress components by 7 +¢t'V we have

= Tij, prs = 7'rs 4 msgﬁnz_l_,rrmz;um, (4.15)
and (8-14) are replaced by % = (4-16)
In view of (4-4) equations (4-15) give
du
11 411 1 %4
' =742 T
122 lez_i_g,,zz@,
dy
ow
133 — /331 9733
13 +27 757 )
dv du
N2 ;124 411 22
le=r14T o +7 3y
P23 — '23+7220w+ 3300
0z’
ou ow
131 — 47311 433 11
‘ T J
To complete the formulae we see from (3:15) that
, a1’ , i, aT’
Ql:—,_._rl pl Q2:_7'2 ay s Q3:-——1'3——07, (4:'18)
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524 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE
where 7=+ 36,(2—1)+ 1612 —1)2, (4-19)
and 7is not summed in (4-19), so that 7, are constants. Equations (3:17) and (4-18) now yield

2T’ 27" 2T’
(8} FI% + 7y dy? +73 92z = 0. (4-20)

Finally, we conclude from (3-18) and (4-18) that

rn=0, r,=0, r3=0. (4-21)

5. Two EQUAL EXTENSION RATIOS: GOMPRESSIBLE CASE

We consider now a special case of the preceding theory in which the extension ratios
Ay A5 are equal so that
A=Ay 0 =0y 11=1y T711=12 (51)

The formulae (4:7), (4:9), (4-10) for the constants ¢; simplify but details are omitted.f}
Values of 'V can be found from (4-5), (4-6) and (4-15). Thus

@
dx

’ d d dw ,
t22:d12£+d11£+d138‘2'—+“w17—',(' (5.2)

/ J 9 /
1 = dy ‘|‘d129§+d13£+‘01 T,

, du v dw ,
1% = dy (9}“%@) +d3392+‘”3 T,

, du  dv
1 = §(dy—dyy) (@4“3;) >

, dv ow
523:d4452‘+d55(§§> 0

, ou dw
3 = d44—&§—|—d55 ox’

(5-3)

where dy = ¢+ 211, dys = cg5+ 2733,
dip =g di3 =13 d3y = C35
dyy—dyy = ¢y — 1o+ 211 = 205D+ 3 ),
= ouy 70 = O+ 1),
by — eyt = O D),

_ _ — 211 .33
dss—dyy = 31— 013 = dyy —dy3 = 71— 733,

(5-4)

Also. the temperature equation (4-20), reduces to

, 02T’ , 02T 02T’
TIV%T +T3W:O, V%T :—(?;Q-—F“ay—z.

1 The special values are given in Green & Zerna.
1 See Green & Zerna for details.
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THERMOELASTICITY FOR INITIALLY STRESSED BODIES 525

We first solve the temperature problem (5-5) subject to suitable boundary conditions and
then (5-2), (5-3) and (4-16) give three differential equations for u, v, w, namely

0%u 0%y 0%u aT’

dua s+ 3(dn dlZ)a z+d44a 5+ 5 ( 11+d12)a 3y +( 13+d55)6 7z Y o Oy 5 =0, (56)
% % 0% %u 02 a7’
i) o s G o+ i) o (i) 10,7 o, ()
02w 0% a7’
d55V1w+d335 5 1 (d13+ds5) (6 2z 0y6z)+ 397 = 0. (5-8)

In deriving (5-8) we have used the last relation in (5-4).

Since 7" is assumed to be known we first seek a particular solution of (5-6) to (5-8) which
expresses %, v, win terms of 7”. The general solution is then found by adding to this particular
solution the general solution of (5-6) to (5-8) when 7" = 0.

Suppose a particular solution can be expressed in the form

i) ) d
u—lx —lax, w=mk. (5-9)

Then (5-6) to (5-8) are satisfied prov1ded that
02 ,
ldy, Vix -+ [y +m(dyy+dss)] 55 +0, T = 0,

iy (510)
[/(dy5+ds5) +mdss] Vi X+md33a 2+“’3 T'=o0.
Recalling (5-5) we assume that y is any particular integral of the equationst
er1x+r3g?§——O g; T (5-11)
Equations (5-10) and (5-11) are compatible if
ldy s (ry vy —13) (r,vy—15) = 0317(dy3+d55) + 71 (r5d55— 71 dsg), 1 (5-12)

mdy, dss(ry vy —13) (r1vy—713) = 037, (rsdy —11dyy) — 0,7, 75(dys +d55)>J
where v,, v, are roots of the quadratic equation (cf. Green & Zerna, p. 131)
dyy dss v +{(dys+ds5)* — dyy dyg — dyy dss} v+ dyzdyy = 0. (5:13)
The above particular solution is degenerate} when 75/r, = v, or v, but in this case there
is a particular solution of the form

_p %, L ST | .
U= lzﬁﬁ , U_lzayﬁz’ w=mzgs My (5-14)
where y is any particular integral of (5-11) and [, m,, m, are given by
[ — 1 [(r) dys— 13 d55) 0, — (dy3+ds5) 71‘”3] (5-15)

2(r3d,, dss — 1} ds3dys)
. _ nl(dis+ds5) r30,— (rydy —11dy) ‘”3]
2(r3dy dss—13ds3dyy)
my = 0\ (11 dyy—73dyy) (rydyg+73d55) +05(di3+dss) 7, (1) 44+r3d“)
) 2(r3dy dss — 1} dy3dyy) (dy3+ds5)

1 For the present we assume that it is possible to find x from (5-11); this is certainly the case in the
examples studied later in the paper.

1 The solution, in this form, is also degenerate if d;; =0 or ds; = 0 but we assume that these quantities
are non-zero.

(5-16)

(5:17)

64 Vor. 253. A.
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526 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE
where, writing 7,/r, for v in (5-13), we have

(dis+dss)rs _n dyy—r3dyy

ridsy—13dss (dy3+dss) 1y r (say) ( )

If, in addition, the quadratic (5-13) has equal roots we see that

d r\2  daad
2 _ % (T3\" _ G334 .
"= dss’ (71) dyy ds5’ (5:19)

and hence the particular solution (5-14) degenerates. In this case there is a particular
solution of the form

a3y
— 22
u= 1 e
_ 120 L :
v=1Iz W’ (5 20)
93 02
w= mlz2i§+mzz£§+m3 (?ﬁ’
where y is any particular integral of (5-11) and
| — (dy3+d55) (037 — 0, 75/7,)
my = Ir,
me — _(ndy+r3dy,) (037 —0, ”3/71) [ (5-21)
2 4d33 dyyrry
-9 1y (wsr—w, r3/1))
R A AV A
It now remains to find the general solution of (5-6) to (5-8) when 7" = 0. Put
_ 061,08y 94, dpy _ 0¢, _
ax+ay U——‘@——E, w——~—az. (5 22)
If u, v, w are given, then _
d d ,
R R - 2 (5:23)
where ¢}, ¢, #3 are any particular integrals of the equations
du dv du Jdv  dg,
2 4 240 04 0V 0P 5
Vigr = ax+ay Vigs = dy ox’ 0z w. (6-24)
Also ¢, is an arbitrary function of (x, y, z) subject to the condition
Viy, =0, , = (5-25)

and ¢, is an arbitrary function of (x,y). We shall not examine in detail here the conditions
under which ¢}, ¢5, ¢; can be found although this is not a difficult problem for the regions
of space which we consider later in the paper. The functions ¥, ¥, do not contribute to the
displacements and may therefore be omitted from ¢,, ¢y, ¢s.
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On substituting (5-22) in (5+6) to (5-8) we obtain the equations

d 02 02 d
[ Vid+ 4 SR s+ d) SF |+ [ —d) Vi +a 5B = 0, (5:26)

d d J d
[ Vi 4 S+ ) S | -4 =) Vi + 4 58] =0, (52)

9
dz I: 13+d55) Vi ¢1+d55V1 ¢2+d33 a¢22] = 0. (5'28)
d d )
Hence 3(dy —dy,) Vigs+dy 3¢23 = d44£a

0 92
d11V%¢1+d44 a¢21+( 13+d55) ¢2 = d44g;1

~

(5-29)

d
(d3+dss5) Vg +dss V%¢2+‘13373%2' = ds5 fo(%,9),

where f, is an arbitrary function of (x,y) and f; is an arbitrary function of (x, y, z) satisfying

the equation V2f —o. (5-30)
Let g(x,y,z) be any particular integral of the equationt
2
72 :ﬁ(xayaz)' (5’31)
? o 208 _ s
Then e (Vig) = Vi=5 3=V 2fi=0, (5-32)
and hence Vig = a(x,y) z+f(x, y), (5:33)
where a, / are arbitrary functions of (%,y). Next define - ‘
alny,2) =gy +AmYz+Bxy),  (534)
where VIA=—a, V2B=-—p (5°35)
02 0%g
It follows that azgzl = 022 = fis (5-36)
and Vig, =0. (5-37)
We can now take a particular integral of the equations (5-29) in the form
dg g |
h=% h=—70 b=y, o (539)
where g, satisfies (5-37) and g, is a particular integral of the equation
Vig, = fy®9)- | (5:39)

The particular integrals (5-38), however, do not contribute to the displacements and may
be ignored so that, without loss of generality, we may put f; = f, = 0 in the right-hand side
of (5-29). | | |
t Again, this can be found in the special problems considered later.
64-2
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In order to complete the solution we observe that equation (5-13) may be written as

dyv—dy _ (dy3+ds5)v

= A Y = 5-40

dy5+ds; dyy—ds5v (5:40)
so that corresponding to distinct roots v,, v, of (5:13) we have distinct values %,, &, of k.
Alternatively (5-40) may be put in the form

d44+ (d13+d55) k d33k
dll d55k+d13+d55

(5-41)

Without loss of generality we may now put

$r=2X1+Xs P2=FExi+kaXo (5-42)
and substitute into the second and third of equations (5:29). Thus, using (5-41), we find that

72 0 02 )
(VH‘Vla )X1+(V1+V23—§> X2 =0,

(5-43)
k, 02 k, ik
(Vz‘*'Vl& 2) Xt (Vﬁ—vQa )Xz = 0.
If &, /v, = ky/v, it follows that
92
(Vi+vagm) =0 (@=1,2). (5-44)
To complete the notation we put B3 = X3 (5-45)
where, from (5-29),
(V2+V ﬁ) =0 — __Qﬁli‘i% .
1 Sazz X3”“ H V3—“dll___d12- (5 46)

Thus the general solution? in the case 7" = 0 to the equations of equilibrium (5:6), (5:7)
and (5-8) is given by

_ 0y, Oy %
=%x Tox Ty
_Ox1 Xy xs
ay ’f‘“ay“*a*;, (5'47)
_ aXI Iy
w =k, 17, +ky L2 ¥

where y,, X, and y; satisfy (5-44) and (5-46) respectively and £, k, are defined by (5-40).
When the quadratic (5:13) (or (5-40)) has equal roots, k, and £, are equal and the solu-

tion (5-42) becomes incomplete. In this case

o _ ls3dyy d.

, B=KB=-", 548
duds” "M (48

dyg+dyy = d11V11€1_'d44 _ (dss—l‘flsﬂl) kl’

Vi =

(5-49)

T The solution is degenerate in certain circumstances, one such case being considered below. In most
problems the solution in any degenerate case can be found by a limiting process from the general solution.
The solution (5-47) is more complete than that given by Green & Zerna (1954).
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and the last two equations in (5-29) become

d
& (Vi 55) + 1 s =) =,
33k

d
%W@+?a%)dgwmmr¢»=a

Hence, using (5-48),

(V247 5) (B4 =,

2d,,v
and therefore k — A1
1¢1 ¢2 3+d55
where (VH—V1 9227) x; = 0.

Then, substituting from (5-52) into (5-50), we see that

02 02
(Vi+n0) 6 — 2 58,

and the complete integral is ¢, = z% + Xos
02
where (V%—l—vl (—9;2) X2 = 0.

Also, from (5-52) and (5-55),

7]
br = k1250 + ki gy —

2dy vy X
d13 + d55 !

529

(5-50)

(5°51)
(5:52)

(5'53)

(5-54)
(5-55)

(5°56)

(5-57)

Collecting all the contributions the complete solution of the homogeneous problem when

vy =y is 9%y, OXy | OXs
“= 0xaz+ dx  dy’

aXI +0X2 aX3
T 250z oy ox’ [

%0 —k (d11V1+d44) o Iy

a2 ~"\g v, —d,,) 3z Tz

_I_

w=kz=%t%

(5-58)

where £,, v, are given by (5-48) and y;, ¥, satisfy the equations (5-53) and (5-56). Also y,

satisfies (5-46).

Thus the general solution to the equations of equilibrium (5-6), (5-7) and (5-8) is given
by addition of the particular solution (5-9) or (5:14) or (5:20) to the general solution (5-47)

or (5-58).

For completeness, assuming that r;/r, == v, or v, and v; == v,, the general solution is

_ 0% X, x5, ;9%
T 0x Tox ox Ty dy +l(3x

_Oxi Oxy dxs, ,0x
T oy Ty dy ox +l¢9y (

Xy . O, Ox
Gs Theg, Tmyys

w =k,

(5-59)

where the potential functions y; satisfy equations (5-44) and (5-46), y satisfies (5-11), and

ki, kg, I, m are given by (5-40) and (5-12) respectively.


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

530 ~A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE

6. Two EQUAL EXTENSION RATIOS: INCOMPRESSIBLE CASE

We consider a special case of the theory in § 4 for an incompressible body in which the
extension ratios A,, A, are equal so that (5-1) holds and

AgA2 = 1. (61)

Then, as in Green & Zerna (1954, p. 132) the values of #'4 can be found from (4-11), (4:12)

and (4-17), so that
du ,0v

N1 o pt vw vv ’

1 =4p +aﬁx+b3y+w1T’

t’22=p’+b@+a@+w T (6-2)
dx ' oy '
ow

133 __ pf b ’

(53 = p oo t0, T,

where @ = 2711 — QW20 —2p+ 202(A2 — A2) {A + B (X3 -+ A3) -+ F(202 + 2)},
b= 20— 13) (¥ -+ A+ BR(G +43) + F(2-+ ), \

6-3
¢ = 2733 —2WAIA;—2p+2A3(A3—A2) (A +2BA} -+ 3FA}), ] (6:3)
0, = LG+ MG +43), w5 = LA+2MI3A.
The components #'12, ¢'23, ¢'3! are given by (5-3) where now
dy—dipy=a—b, dy=B@+Y), ds =3O+ (6-4)

Since the deformed body is assumed to be in equilibrium under a steady-state distribution
of temperature, equation (5-5) is solved subject to given boundary conditions and then the
incompressibility condition (4-11) and equations (4-16), (5-3) and (6-2) yield four differ-
ential equations for u, v, w, p’. These may be written in the form

du dv  Jdw
3;+§!‘/"+52 = 0, (6:5)
a ., ., , %u 0% K 0%
5;([’ + o, T)+(a—d55)W—F%(a—b)W+d445;+{%(a+b)~d55}m =0,
a ., , , %u % % %
@(p +a)lT)+{%(a+b)—d55}m!~/+%(a—~b)a—x2+(a—d55)5y—2+d449~z—2:0,’ (6-6)
| 2 0y T') +dg Viwt (c—dy) 22 — 0
az\ T 55 V1 44 0% .

As in the compressible case we seek a particular integral of (6-5) and (6-6) expressing
u, v, w, p’ in terms of 7. The general solution is then obtained by combining this with a
general solution to the homogeneous problem given by 77 = 0.

There exists a particular solution of (6-5) and (6+6) of the form

u:l%, vzl%, =ma~7§, )
dx y 0z (67)
_ 13011 (dyy—0) +73d55] +7,05[1, dyy +15(d55—a)] 0%

? dys(riky—13) (nbhy—rs> 022’]_
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where, in view of (55),

ik 02 -
2 V1X+’33 7§ 0, —a—z?—g T, (6-8)
and me—13]_ 1 73(ws—w,) ; (6:9)

n dys(r ky—13) (rihy—13)

In (6:7) to (69), &, k, are the roots, assumed at present to be distinct, of the quadratic
equation K2dgs+k(dyy+dss—a—c)+dy = 0. - (6-10)

In order to find a general solution to equations (6-5) and (6-6) we again make the sub-
stitution (5-22) when 7" = 0, leaving aside any discussion about the possible limitations
thereby imposed on the region of space considered, since in the special applications made
in this paper the form of solution is satisfactory. By analysis similar to that given in § 5 we
may show that the solution (5-22) is suitable provided

2
V2¢I+a ¢2 = O,

, ' d
P+ (a—dyy) Vigy i, 501 = o, (6:11)

d
P +dss Vidy+ (c—dyy) 3¢22‘ 0,

d
Ha—b) Vigy+dy, 502 — 0. (612)
Without loss of generality we now put
$r=2x1tx» Ga=FEXi+hXe @5=12s (6-13)
where k,, k, are the (distinct) roots of (6:10). It follows from (6-11) and (6:12) that
(b =0 @=123) . (6:14)
2d,
where ky = 2{14'45’ (6:15)
/ 22 X1 9%,
and P = k(R dss+dyy— ) 5 +ky(ky d5+d44 )’a'z‘z‘,
» 2 (616)
= (kla—kld55—~d44)7§—21+(kza—'k2d55~d44)—5zx-22. ‘
Thus the solution in the homogeneous case is given byt
aXl 0%, 9% )
T ox T ox ox Ty dy’
_ 0 9% 9%
T dy "oy 0x’ .
P P ot (6-17)
w =k1 aXl_ch Xz’ |
77X .0
= (d44“5+d55 )kl 3 ) +(d44 ¢+dssky) ky =75 922,

where the potential functions y; satisfy (6-14).

1 This solution is more complete than that given by Green & Zerna (1954).
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532 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE

As already indicated the above solutions fail in certain special cases, the most important
being when r,/r, is equal to £, or £,, or when the roots £, £, of the quadratic (6-10) are equal.|

In the first case when 74/r; is equal to &, or £,, we find there exists a particular solution
of the form

%, 9% R S
u~lzm—z, U—ZZW’ w=mzals—my, o1s)
P = ﬁ(“)l —0y) {dyy 11+ (d55—a) ’3}z&+“’1 dy515 — w3 dy, 1] ?ﬁ(
2(dyyr—ds513) 0z° dygri—dss1§  02%
0? 02 ,
where r V?X“s;az% —0, 0_2% =T, (6:19)
d _ sy (03—o)mn 6:20
o " " 2(dyyrf—ds573) ( )
When, in addition, £, and £, are equal so that
s k. — 2 G .
. ki =ky K2 . (6-21)
the particular solution (6-18) breaks down and a particular solution takes the form
3y
e [F2 T N
u=lz 0xdz%’ 1
*x
— 72
v=1Iz 3y (622)
%X %X 9x
— 2l X _on 07X 24
w=mz 753 2mz 0zz+2maz’
p’—(&jﬁ{d r+ (d —a)r}zz—aﬁ(qtl(a) 03) Z- (3w, +w,)
871d44 4471 55 3 024 2\%1 3 23 1 1 3 922?
_ 1y (0307 .
where m = . l= sdr, (6-23)

Similarly, in the second case, if the roots %, £, of the quadratic (6-10) are equal, the
general solution to the homogeneous problem becomes

— 3X1 02X2 (?Xs

¢ —_79;+z0x02+7y—’
M_—a—&_{_z%_%,

dy " “Oydz ox -

Mg PXe g X

w = 13 + 1 922 laz’

’ 02 93 92

# =l s ) (B 258) 2%,

where the potential functions y; satisfy (6-14).

1 Once again we remark that these are not the only cases of degeneracy but that, in most cases, the
solution can be found by a limiting process from the solution in the general case.
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Thus the general solution to the incompressibility condition (6+5) and the equations of
equilibrium (6-6) is given by adding the particular solution (6-7), or (6-18), or (6:22) to
the general solution (6:17), or (6-24). V

The general solution in the non-degenerate case is given by displacements of the form
(5-59) where y;, x, satisfy (6-14) and (6-8) respectively, %, &,, [, m follow from (6-10) and
(6:9), and

P = (dy—c+ds k) k, ’azqul (dyy—c-Fds5ky) Ky 73‘;%2
Tsln(du =) rydsg] sl du £ryldss = @) ] X 695
dys(r1 Ky —13) (1 ky—7) 0z

7. CRACK PROBLEMS: COMPRESSIBLE MEDIUM

The theory developed in §§ 5, 6 is now used to solve two problems. The first is concerned
with a penny-shaped crack in an infinite medium and the second in §9 with boundary-
value problems in the half space. Throughout this and the next sections we use the method
given by Green & Zerna (1954, p. 175; see also Collins 1959) of representing potential
functions as particular integrals but the results could also be obtained with the aid of
Hankel transforms. Hankel transforms have been used to solve analogous problems in
classical elasticity by Olesiak & Sneddon (1960).

Suppose that an infinite isotropic medium is deformed as in §§ 5, 6 but that, in addition,
the stress component 733 is zero so that

D2+ 2WAZ2+p = 0. 7-1
3

Further, there is a penny-shaped crack of radius ¢* in the plane z = 0 and before the initial
finite deformation this was a crack of radius ¢, in the same plane, where

a* = ), a,. (7-2)

The presence of the crack does not affect the stress distribution since 7°* vanishes. We use
cylindrical polart co-ordinates (7, 8, z) in the deformed medium so that the crack is defined
by z=0, 0<r<a*, (7-3)
We suppose that equal (small) distributions of temperature ¢f(r) and pressure eg(r) are
applied to both the upper and lower surfaces of the crack. This problem is equivalent to
the axially symmetric problem for a semi-infinite medium z > 0, previously deformed as
in §§ 5, 6 with the surface z = 0 free from applied stress, and then subjected to the following
boundary conditions:

T'(r,z) =f(r) (z=0,0<r<a%*),
aI{;gi@ =0 (Z =0, a* < 7’), } (7'4)

78 =g(r) (z2=0,0<r<a*),
w=20 (z=0, a* <), (7-5)

PB=7r8=0 (z=0,0<r< o).

+ The constant r defined in (5-18) is not used here so there should be no risk of confusion.

65 Vor. 253. A.
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We assume that f(r), g(r) are sectionally continuous in 0 < 7 < a* with at most a finite
number of finite discontinuities.

We consider first the compressible medium of § 5, and deal only with the non-degenerate
case, since the solutions in the other cases may be found from this by a limiting process.
From (5:59), (4-5) and (4-6), and remembering (5-11), (5:12), (5-40) and (5-46), we have

, J i} i} (9 02

T = Caa 3, [(1 +ky) 0X1+( Hks) aXZJr(H X:l+044 0y)§3z (7-6)
, d d J 0?

T 23 644@[(1‘|‘k 8X1+(1+‘k2) —“aé2+(lff—m) —Xil ‘*(/‘44’—*-‘“01;‘?3323 (7’7)

, 92 02 02 ,
733 = (33K, —¢3,71) axz - (C33ky—C3, V) aXé (c33m—c3, lrs[1)) 9‘%‘*“‘”3 1. (7-8)

The boundary conditions (7-5) can be satisfied if

X3 =0,
and (1 +k1)aX‘+(1+k)%X24 (I+m )‘;ﬁzo (z=0,0<r<o0), (7-9)
d 9 9
WPk im0 (z—0,a% <n), (7-10)

a%y 02 02 ,
(c33hky—¢3171) 575 922 +(633k “C31Vy) 75’22’4‘(6337”“531173/71) 3‘%*‘”3 1" =g(r)
(z=10,0<r<a*). (711)
We recall that x is a particular integral of the equations
2 a X 82 ’
71V1X+733 =0, e =17, (7-12)

and, in view of equations (5-44) satisfied by y; and y,, we now put

ez (2) )+ g (n 2),
=iz (5] | -1 e (n 7).

and choose the constants a, £ so that the boundary conditions (7-9) and (7:10) are satisfied
identically as far as the terms in dy/dz are concerned. Thus

(7-13)

13\t _hym (_13_)'é _ m—lk, .
“(ml) “hk PUn) TRk (7:14)
Also, from (5-44), the function ¢(r, z) satisfies the equation
Vg =0 (7-15)

and we observe that the boundary condition (7-9) is completely satisfied by the values
(7-13) for x, and x,. Using (7-13) to (7-15) we see that the remaining boundary conditions
(7-10) and (7-11) reduce to

(7-16)
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1 :Caskl“csll’l_caskz“csl"z
X (L+k) vy (L+ky) vy’

Ir Caaky—Cavy) 0T Caako—Cay Vo) AT
—3+w3+( a3k —¢31 1) 3_}_‘( s3ka—C3175) B 3
A1 " Ve

where

(7-17)

§ T Gl

We consider first equations (7-12) subject to the conditions (7-4). Since 7" satisfies the
same differential equation as y it can be shown (see, for example, Green & Zerna 1954,
p. 175) that a suitable integral for 7" which satisfies the second condition in (7-4), and
vanishes at infinity, is

h(t) dt

) = L[ _(n)" :
T'(r,z) = éf—a' 5 (L1 {= Z(’a) ) (7-18)

where A(t) is a real sectionally continuous even function of ¢ and where, for 0 < ¢ < a¥,

R (i = gebin, (=i — et (€2 ) (719)
E2cosp =124+ (2—¢2, Eising =20t (0<<y<m).
If we observe that when { = 0
PP = P ()P = (P - (r>0), (7:20)
(P (CHOY = — R =i (<)),
the first condition in (7-4) gives
roh(5)dt
Jo (P—a)i =fr) (0<r<a*). (7-21)
This integral equation can be solved by elementary analysis to yield
_2d t rf(r)dr .
M”‘%&L@Z}ﬁ (t>0). (7-22)

We can now verify that A(¢) is sectionally continuous.

When 7" is given by (7-18) equations (7:12) must be solved for x. The solution is un-
determined to the extent of an additive function of the form {w(x,y) +Q(x,y), where w, Q
are plane harmonic functions. The indeterminacy can be removed by imposing the con-
dition that all stress components must vanish at infinity so that we require that all second-
order derivatives of x vanish at infinity. The function y and its first derivatives will not, in
general, vanish at infinity, which implies that the components of displacement may not
vanish at infinity.

From (7-12) and (7-18), remembering the conditions imposed at infinity, we get

(n)* ) 1 [7 mymterier e @riomi as (7-23)

13 0z

where here and subsequently, for definiteness, the principal value of the logarithm is taken.
Similarly

P 2) = 5[ O] (IR A P -+ (i} ] de (729
65-2


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

536 A. H. ENGLAND AND A. E. GREEN ON STEADY-STATE

We now consider equations (7-15) and (7-16). If 3¢/dz vanishes at infinity then a suitable
value for d¢/dz which satisfies (7-15) and the second condition in (7-16) is

e _1(e g (7.25)

2 I RN T

where ¢(¢) is a real sectionally continuous odd function of 7. The verification of the second
condition in (7-16) is immediate if we remember (7-20). From (7-25)

% 1 4 (= (z+it)q(f)dt _
022 é?;a_rjw* (24 (z+if)2 (7:26)
If we again use (7-20) we see that the first condition in (7-16) is satisfied if
L 0% — X - Y] (0= 7<), (1-27)
Alternatively an integratlon with respect to 7 yields
r tq(t) dt v
[0 = [alxe =Y an o<r<an, (7-28)
the constant of integration vanishing in view of the conditions imposed on f(«), g(«), ¢(¢).
Hence
2 (* r[Xg(r) = Xf(r)] dr
) == t>0), :
a0 = | 2 0) (1:29)

which satisfies the conditions imposed on ¢(#). Also, if all derivatives of ¢ with respect to r
or z are zero at infinity, and we recall (7-15), equation (7-25) can be integrated to give

B(r,z) = Eli f _ g(t) In [z +it+{r2+ (z i)} de. (7-30)

For some purposes it is convenient to write the solution in an alternative form. From
(7-29) we see that ¢(¢) is a linear combination of a term depending only on the specified
temperature distribution and a term depending only on the given pressure distribution.
From (7-22) and (7-29) we have

Q(t) = Xs(t) — YH(t), (7-31)

where Hy =2 (g(’) f)’% ht) = H'@), (7-32)
t rg(r)dr :

and s(t) = o (—r)t (7-33)

With the help of (7-24) and (7:31) and an integration by parts, equation (7:30) becomes

40,2 = X500V xfz ()

1
%
+ T (o i) In [2-ia* -7+ (z-+ia%) )

YH(a (z ia*) In [z —ia* + {2+ (z—ia*)?}]

ZI{(“ o+ (2 Hiar)p T oy sy, (7-34)
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where 1,2) =g j ) In[z+it+ {2+ (z+if) 2] de. (7-35)
The solution (7 ‘13) is now

o= [ () )+ v ()
%V(%ITZB) [(ahh-+ia®) tn 2 +ia* + 2+ (2 +ia* 2]
(2 —ia*) In [z} —ia* + {2+ (2 —ia*) 3]
— {2+ (2 a3 — 2+ (et i) 3| (7:36)

S yORS CE R e - W

— DB (o i) In Lol +ia®+ 7+ 2

+ (z/vh —ia*) In [z/v —ia* + {2+ (z/v} —ia*)2}}]
— {2+ (2 et B — (2 i), (7:37)

where y and ¢ are given by (7-24) and (7-35) and depend respectively only on the applied
temperature and pressure on the crack.

The problem of the crack with boundary conditions of the form (7-4) and (7-5) is now
solved, and corresponding stresses and displacements may be found by using the formulae
of § 5. Itis, however, possible to obtain some useful information without going through the
complete analysis in a particular problem. For example, the normal displacement at the
surface of the crack is, from (5:59), given by

w:kl'?‘%k Zo zx (z=0,0<r<a*, (7-38)

where ¥, ¥, are obtained from (7-13) and x from (7-24). Hence, remembering (7-14),

we have A 367, 2)
= 1 - 2 E— * .
v (1 +k 1+k2) dz (2=10,0<r<a*), (7-39)

where, from (7-25) and (7-20),

Qé%%ﬁ - " (t%(—’i)g; (Z =0,0<7r<< a*). (7.40)

Also ¢(t) is given by (7-29).
In the simple case when a constant normal pressure and a constant temperature are
applied to the surfaces of the crack, so that

Sr) =for 8(r) = =20, (7-41)
where f;, g, are constants, equation (7-29) at once yields
2
q(t)=—— (Xgo+ Yfo) . (7-42)
The normal displacement at the crack then becomes
_2 ky ks *2__,2\% %

65-3
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8. CRACK PROBLEMS: INCOMPRESSIBLE MEDIUM

The problem specified at the beginning of § 7 is now solved for an incompressible medium
using the theory of § 6. The gencral non-degenerate solution is given by the sum of the two

U —= —— _4___.._*_ y +l

_ 0%, 9% Oxs 9%
9y + dy  ox —H(?y

_____ Xy, 0% Oy
=k, thg tmas

0? 0?
P = (dyy—c+dyghy) by 55+ (dyg—c-+dighy) by 5%

_ C3Q_L[f1 (dyy—c) + "3_(!;5] 1051 dyy+13(dss — “),] &X )
dss(riky—13) (1 ky—1s) 0z2

From (4-6) and (8-1), since ¢, = ¢55 in our problem,

/ 0)( dy 0)( 0%
13 __ | 1_ _ 2 A
T 6443 I: 1 k) (1 I'k) a +( :|+6443y32

- d ad 2
23"‘6443 l:l+k) X1+(1+k) 3XZ+(I+ 3X:| 544(;};);;

Also, since 7% = 0 here, it follows that 733 - £33 50 that, from (6-2) and (8-1),

1 dz2 2 022
if we make use of (6-9) and (6-10).
The boundary conditions (7-4) and (7-5) can be satisfied if

, 0? 02
7’3 = (dyy+dssk)) k XI+(d44‘|"d55k2)k xz“‘(d44+d5573/’1)m3 2

X350
(k) 4 11k 2t 1 im E =0 (2= 0, 0<r <),
My My
WP kLm0 (z=0,0% <),
o2

0%
(dss+dssky) by 525 922 +(d44+d55k ) k2 3_22

2
it dygrfr)m X = g() (20,0 <7< a¥).

Following the same development as in § 7, these conditions can be satisfied by

& ““X{”(rk)} Jik/lc ¢(’Jk)

X2 ==/3’X{’,z<%)i} ll/fk ¢( ’Jk)

(8-9)


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THERMOELASTICITY FOR INITIALLY STRESSED BODIES 539

where «, £ are not the same as in § 7 but are given by

bk, I
7‘3 __thy m 3 _ m . .
a(hkl) ~k1~—k2’ ﬂ(rlk) F—k, (8-10)
Also V2§(r,z) = 0, (8:11)
2

P02 _ Xe()—7f1) (=0, 0<r<a¥),

| (8:12)
M:O (Z=0,a*<r),

0z
the constants X, Y being different from those in § 7 and now defined by

L — (d44+d55k1) k% . (d44+d55k2) k%
1+k 1+k, 7

(813)

I

T (dyg+dssky) arsfr + (dyy+dss k) Prafr) + (dyy +-dssrsr)) m.

The function y still satisfies equations (7-12) and 7" has the value (7-18).

The problem has been reduced to a boundary-value problem of the same form as that
solved in § 7 and results can at once be written down from those in that section. We there-
fore omit further details but we observe that the normal displacement at the crack is still
given by (7-39), (7-40) and (7-29) with appropriate values (8:13) for X and Y and where
k,, k, are now the roots of equation (6-10).

A particular case of some interest arises when the incompressible material has negligible
internal energy so that the Helmholtz function is proportional to the temperature 7.
A further special case of this occurs for a Mooney type material in which the energy W is

W=A T(I,—3)+A4,T(I,—3), ' (8-14)
A,, 4, being constants. When 4, = 0 the form (8:14) has been found to be of value for
vulcanized rubber (see Treloar (1958) for further details). Most of the constants used in
§ 6 have been evaluated in Green & Zerna (1954, p. 135) when 7 is constant but are re-

peated here with the slight change of notation. The further constants arising from the
presence of T in (8-14) are also included. Thus

®=24,T, V=24,T,

A=B=F=0, (8-15)
L=24,, M=24,,

a =2y = 4034, + 4, 0) T, ¢ = 2d,y = 45(4,+4,3) T, (8-16)
the temperature 7 in (8-15) being constant. Also '
ky =1, ky,=2 =1/, }

kk ko -1 (8:17)
1+k 14k, 2(0§+1)°
and 0, = 24,3 +24,A3(A3+23),)
0y = 24,3+ 44,1, (18)

il g (1—1)1.
; & )T
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It follows from (6-9), (8-17) and (8-18) that

Tyl (L—=A3) 75
m=— = s 8:19
no (n—r) (n—rsd)) T (8:19)

and then, from (8:10),

¥ 3 3
.f.a) N (r_a) _ _ANn .
o = s = . 8:20
("1 (rg—r) T d 7y (ry—73A8) T ( )
Further, from (8-13) we have,
_ M0+ 1) |
X T AR 1) T TN —1) (8:21)
20 [ A=A Al (5.22)
T(ri+13) (r} +4373) (A +A§+3843—1)°
and, finally, we recall from (4-19) that
n =6 +3%A—1)+1%Ai-1)2 > 0,1 (8-23)

1y =6 +36(8—1) +{%(A43-1)2> 0,
where €, €,, €3 are polynomials in the invariants [, —3, I,—3, i.e. in the two quantities

A2—1)2 (14222 A3—1)2(2+A3
(A )A‘g 1), (_1*__)1%(_MQ (8-24)

From (8-17), (8-21) and (8-22) we see that the value of the normal displacement becomes
infinite when 4, is a root of the equation

2 +28+303—1 =0,

which has a root near A, = § suggesting that for this value of A, the original finite deformation
is unstable, as indicated in Green & Zerna (1954, p. 138).

9. HALF-SPACE PROBLEMS

Some mixed boundary-value problems associated with the half space can be discussed
using a technique similar to that for the crack problem of §§ 7, 8. Axially symmetric prob-
lems in which the surface values of the normal pressure and the temperature are pre-
scribed everywhere along the boundary, together with zero surface shears, can be solved
with the help of Hankel transforms. Alternatively, results can be deduced from the analysis
of the previous §§ 7, 8 by a limiting process. To illustrate this we consider a special problem
which is a generalization of that discussed at the end of § 7. We assume that constant normal
pressure and temperature are applied over a circular area of both surfaces of the crack of
radius @, < a*. Over the remainder of the crack the pressure and temperature is zero. Thus

J) =Jfo, &) =—& (0<7r<a), } (91
f)=0, g =0 (o <r<a). )
From (7-29) we then have
1(0) = —2 (Xgo+ o) O<i<a |
| (9-2)

0 =2 (Xt X [t~ ()] (0, << a¥).
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The normal displacement at the surface of the crack is then obtained from (7-39) and (7-40)

in the form k, k, 3
> (Xgo+Xfy) (1+ k —1) v (9-3)
a* p__ (42
where = (a2—1?) *—}-f = (=) dt (0<r<a),
t2_72
(9-4)
1= t2—r2 pEIEE

If a; = a* we recover the formula (7-43). Otherwise part of the integrals in (9-4) can be
expressed in terms of elliptic functions.

We now let the radius a* of the crack tend to infinity. We then have a boundary-value
problem for the half space in which the normal pressure and temperature are prescribed
on z = 0, being zero outside a circle of radius q,, the shear stresses on z = 0 being zero. The
corresponding normal displacement on z = 0 is given by (9-3) where now

w, = (a}— r2)‘5+f —2—3‘%)—& (0<r<a),
(#=r) (9°5)
w —fo = tz_az)% d¢ (a; < r <)
1 (2 _,2)% L )

In a similar manner we may deduce general formulae for the half space from those for
the crack by defining f(r) and g(r) to be zero outside an interval 0 < r < a; where g, < a*,
and then making a* - co. For example formula (7-32) then becomes

Hy =2 [ TN (0<i<ay),

(tz__,z)% (9:6)
1 dr
H(i) = ﬂfo (g(r)rz)% (a, <t< ),
and 77(r,z) from (7-18) becomes
) t)dt )
T (1‘ Z 2f_w m% (9 7)

Since f(r) is sectionally continuous we see from (9-6) that H(t) = 0(1/|¢|), and A(f) = 0(1/#2),
for large |¢|. Hence (7-23) becomes

(73) ax(arzz 2f—w (&) In [+ it {2+ (C+i8) 2] dt. (9-8)

Difficulties occur in finding the corresponding values of y(r, z) from (7-24). However, we
only require derivatives of x and the x and y derivatives can be found without difficulty.
Thus, from (9-8)

(rl)* 9%(r,2) _ f A(t) de
W ooz T2 O E i g,
r, 0x(r, 2) h(2) dt
and? r; ox 2 o (it {2+ ((+iF) 2}%’ (9-9)

with a similar expression for dy/dy got by replacing x by y.

T We observe that dy(r,z)/dx satisfies equation (7-12) and suitable conditions at infinity.
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542 A. H. ENGLAND AND A. E. GREEN
Further, (7-29) is replaced by

g(t) = %f; r[Xg(r) — Yf(r)] dr (0<t<a),

(tzﬁrz)%
1[Xe(r) ~ V()] (9:19)
ay 7
qt) = ﬂfo ot (@ <i<oo),
so that ¢(f) = O(1/|¢|) for large [t| Finally, the formula corresponding to (7-25) is
q(t ds _
ﬁz 21f P+ (z+it 2}% (9-11)
and we also find that
dp  x (= q(t)de (912)

Ox 2] o {2t (z+it)2P[z+it+ {2+ (2 +i6)20]

On inspection we see that we may take the limit of the above solution as a; — co provided

we stipulate that f(r) = g(r) = O(1/r*) (« > 1) as r >oo. With this proviso the integrals

n (9-8), (9-9), (9-11) and (9-12) are unchanged in form, although (9-6) and (9-10) now
reduce to

o -2 A0,

t2 72)%
(9-13)
r[Xeo(r)—Y,
=3[ B

for all ¢. Also, from (7-13), or (8+9) in the incompressible case, we see that these conditions
are sufficient to ensure that the stresses are zero at infinity.

Thus a solution has been found to a half-space problem in which the shear stresses are
zero and the normal pressure ¢g(r) and temperature ¢f(r) are prescribed arbitrarily on the
surface z = 0 under the restrictions that f(r), g(r) are sectionally continuous with at most
a finite number of finite discontinuities and are of O(1/r*) (« > 1) as r — 0.
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